THERMOCHEMICAL CONVERSION OF PLASTIC WASTE INTO LIQUID FUELS: ADVANCES, CATALYSTS AND SUSTAINABILITY

Authors

  • Aparecida Hidenaria Medeiros do Carmo
  • Márcio Luís Trovão de Araujo
  • Alamgir Khan

DOI:

https://doi.org/10.56238/revgeov16n5-312

Keywords:

Pyrolysis, Plastic Waste, Liquid Fuels, Catalysts, Circular Economy

Abstract

The increasing generation of plastic waste in Brazil and worldwide highlights the limitations of traditional recycling systems and reinforces the need for technological routes capable of promoting the valorization of these materials. In this context, pyrolysis emerges as a promising thermochemical alternative, particularly in light of sustainability demands, emission reduction goals, and the development of synthetic fuels compatible with high-energy-demand sectors such as aviation. This study aims to analyze the conversion of plastic waste into liquid fuels through thermal decomposition processes, emphasizing the role of catalysts and the potential integration of this route with the production of sustainable aviation fuels. A comprehensive bibliographic review was conducted, encompassing studies published between 2019 and 2025, as well as institutional reports related to solid waste management in Brazil. The findings indicate that catalytic pyrolysis exhibits higher efficiency in breaking polymer chains, greater selectivity, and improved physicochemical characteristics of the resulting fuels when compared to conventional thermal pyrolysis. Results also highlight the strategic relevance of this technology in the Brazilian context, considering the country’s low plastic recycling rates and the need for innovative circular economy solutions. It is concluded that pyrolysis presents high technical feasibility and environmental relevance, positioning itself as a promising alternative for the energetic valorization of plastic waste and for advancements in sustainable fuel production.

Downloads

Download data is not yet available.

References

ABNISA, F. Enhanced Liquid Fuel Production from Co-Pyrolysis of Mixed Plastic Waste Using Natural Mineral Catalyst: A Comparative Study. Energies, v. 16, n. 3, p. 1224, 2023. DOI: 10.3390/en16031224.

BARDIN, L. Análise de conteúdo. Ed. rev. e ampl. São Paulo: Edições 70, 2011.

BRASIL. Lei n.º 14.933, de 24 de agosto de 2024. Institui a Política Nacional de Mudança do Clima e dispõe sobre diretrizes para descarbonização, economia de baixo carbono e incentivos energéticos. Brasília: Presidência da República, 2024.

ICAO. Long-Term Global Aspirational Goal (LTAG) for international aviation of net-zero carbon emissions by 2050. Montréal: International Civil Aviation Organization, 2022.

GIL, A. C. Métodos e técnicas de pesquisa social. 7. ed. São Paulo: Atlas, 2019.

KHATIBI, M.; NAHIL, M. A.; WILLIAMS, P. T. Non-thermal Plasma/Catalytic Pyrolysis Processing of Waste-Derived Fuel: Upgrading of Pyrolysis Volatiles. Waste and Biomass Valorization, 2025. DOI: 10.1007/s12649-024-02866-w.

KOU, L.; GUO, J.; WANG, J.; BAI, M.; HUO, E. Aviation fuel products produced from catalytic pyrolysis of low-density polyethylene using a Mg–Mo/biochar bimetallic catalyst. Sustainable Chemistry and Engineering, v. 13, n. 12, p. 4661-4671, 2025.

LAKATOS, E. M.; MARCONI, M. A. Fundamentos de metodologia científica. 5. ed. São Paulo: Atlas, 2003.

MONTEIRO NETO, J. DE B., FERNANDES, R. M. T., & KHAN, A. (2025). Effect of Metal Doping on the Thermodynamic Stability of Rub-11 Zeolite. The Journal of Engineering and Exact Sciences, 11(1), 23032. DOI: 10.18540/jcecvl11iss1pp23032.

PANORAMA dos Resíduos Sólidos no Brasil 2024. Associação Brasileira de Resíduos e Meio Ambiente (ABREMA). São Paulo, 2024.

PANDA, A. K. et al. Pyrolysis of Waste Plastics for Liquid Fuel Using Sulfated Zirconia as a Catalyst. Waste and Biomass Valorization, v. 11, p. 6337-6345, 2020. DOI: 10.1007/s12649-019-00841-4.

SYAMSIRO, M. et al. Liquid and Gaseous Fuel from Waste Plastics by Sequential Pyrolysis and Catalytic Reforming Using Natural Indonesian Zeolite. Waste Technology, v. 2, n. 2, p. 44-51, 2014. DOI: 10.12777/wastech.2.2.44-51.

VADIRAJ, K. T. et al. Plastic Waste Pyrolysis into Plastic Oil: A Potential Future Fuel Resource. Journal of Sustainable Development of Energy, Water and Environment Systems, v. 13, 2025. DOI: 10.13044/j.sdewes.d13.0545.

WAN MUHAMMAD, W. N. A.; MOHAMAD, M. N. A. A Systematic Review of Liquid Fuel Production from Waste Plastics through Pyrolysis Technology. International Journal of Industrial Research and Engineering Ventures, v. 7, p. 735-748, 2025. DOI: 10.35631/IJIREV.722041.

YAQOOB, H. et al. Pyrolysis of Plastic Waste for Alternative Fuel Production: Pathways, Parameters, and Challenges. RSC Sustainability, v. 3, p. 208–218, 2025. DOI: 10.1039/d4su00504j.

UNIVERSIDADE FEDERAL DO ABC (UFABC). Energia do Lixo: Tecnologias para Recuperação Energética dos Resíduos Sólidos Urbanos. Santo André: EdUFABC, 2024. E-book. ISBN: 978-65-89992-49-3.

Published

2025-12-29

How to Cite

do Carmo, A. H. M., de Araujo, M. L. T., & Khan, A. (2025). THERMOCHEMICAL CONVERSION OF PLASTIC WASTE INTO LIQUID FUELS: ADVANCES, CATALYSTS AND SUSTAINABILITY. Revista De Geopolítica, 16(5), e1189. https://doi.org/10.56238/revgeov16n5-312