INDUSTRIAL SYMBIOSIS PROGRAM FOR THE SANTA CRUZ INDUSTRIAL DISTRICT, RIO DE JANEIRO: A PROPOSAL FOR SYMBIOTIC FLOW BETWEEN A STEEL MILL AND A GYPSUM BOARD MANUFACTURING INDUSTRY
DOI:
https://doi.org/10.56238/revgeov17n2-096Keywords:
Industrial Symbiosis, Circular Economy, Flue Gas Desulfurization, Resource Efficiency, FGD GypsumAbstract
This study proposes the implementation of an Industrial Symbiosis (IS) program in the Santa Cruz Industrial District (RJ), with emphasis on the integration between a steel plant and a drywall manufacturing facility. The methodological framework was based on the denmark Kalundborg Industrial Symbiosis model and on knowledge acquired through the SACI (Systemic Approach to Clean Industry) Program, developed in partnership with the Kalundborg Symbiosis Institute. Technical site visits were conducted, and material and energy flows from 9 of the 15 companies operating in the district were systematically mapped and analyzed. Data were collected using structured questionnaires, and a dedicated assessment tool was developed to identify primary raw materials, waste streams, and potential synergies for resource exchange among the companies. The analysis identified more than 15 potential symbiotic exchanges. The most promising short-term opportunity involves the use of flue gas desulfurization (FGD) byproduct generated by the steel plant as a substitute for natural gypsum in gypsum board production. The proposed symbiotic exchanges demonstrate significant potential environmental and economic benefits, including reduced CO₂ emissions and decreased reliance on virgin raw materials. The findings indicate that the implementation of industrial symbiosis strategies can enhance resource efficiency and foster circular economy practices within the Santa Cruz Industrial District. Furthermore, the proposed framework may serve as a replicable model for the development of industrial symbiosis networks in other Brazilian industrial parks.
Downloads
References
AAKRITI; M. S.; JAIN, N.; MALIK, J. A comprehensive review of flue gas desulphurized gypsum: Production, properties, and applications. Construction and Building Materials, v. 393, p. 131918, 2023.
AEDIN. Associação das Empresas do Distrito Industrial de Santa Cruz, 2025. Quem somos. Disponível em: https://aedin.com.br/.
BARAN, E.; HYNOWSKI, M.; KOTWICA, Ł.; ROGOWSKI, J. A Study of the Influence of Cement Addition and Humidity on the Mechanical Strength and Microstructure of Flue Gas Desulfurization Gypsum–Cement Plasters. Materials, v. 17, n. 10, p. 1-18, 2024.
BILYAMINU, A.M.; RENE, E.R.; PANDEY, A.; BABEL, S.; CLEMENT, Q.B.; JAMES, A.; HERNANDEZ, H.G. Industrial symbiosis and eco-industrial transformation opportunities for environmental protection in Nigeria. Sustainable Production and Consumption, v. 49, p. 219–235, 2024.
BRASIL. Arquivo Nacional. Superintendência da Fazenda de Santa Cruz (1889-1930). Brasília, DF: Senado Federal, 2025.
CHEN, T.; IQBAL, W.; ARSHAD, I. Assessing the supply chain management of waste-to-energy on green circular economy in China: An empirical study. Environmental Science and Pollution Research, v. 30, p. 100149–100164, 2024.
CHERTOW, M, R. Industrial symbiosis: Literature and taxonomy. Annual Review of Energy and The Environment, v. 25, p. 313-337, 2000.
CHERTOW, M. R. “Uncovering” industrial symbiosis. Journal of Industrial Ecology, v. 11, n. 1, p. 11–30, 2007.
DANIELSSON, S. E.; MØLLER, P.; RANDERS, L., 2018. Modelling CO₂ savings and economic benefits for the Kalundborg Symbiosis. Disponível em: https://www.symbiosis.dk/wp-content/uploads/2018/06/KalundborgSymbiosisPaperLCA2018-06.pdf
DATARIO. Bairros Censo, 2022. Disponível em: https://www.data.rio/datasets/fd354740f1934bf5bf8e9b0e2b509aa9_2/explore?showTable=true
DATARIO. Índice de Desenvolvimento Social (IDS) e seus indicadores constituintes, segundo as Áreas de Planejamento, Regiões de Planejamento, Regiões Administrativas e Bairros - Município do Rio de Janeiro, 2010. Disponível em: https://www.data.rio/documents/fa85ddc76a524380ad7fc60e3006ee97/about.
DAVE, T.; LAYTON, A. Designing ecologically-inspired robustness into a water distribution network. Journal of Cleaner Production, v. 254, p. 1-16, 2020.
EHRENFELD, J. R.; CHERTOW, M. R. Industrial symbiosis: The legacy of Kalundborg. In: Ayres, R. U.; Ayres, L. W. (Eds), A handbook of industrial ecology. Edward Elgar, p. 334-348, Grã-Betanha: Elgaronline, 2002.
EHRENFELD, J.; GERTLER, N. Industrial ecology in practice: The evolution of interdependence at Kalundborg. Journal of Industrial Ecology, v. 1, n. 1, p. 67-79, 1997.
FILONCHYK, M.; PETERSON, M.P.; ZHANG, L.; HURYNOVICH, V.; HE, Y. Greenhouse gases emissions and global climate change: Examining the influence of CO2, CH4, and N2O. Science of The Total Environment, v. 935, p. 1-7, 2024.
HSU, H.-W.; BINYET, E.; NUGROHO, R.A.A.; WANG, W.-C.; SRINOPHAKUN, P.; CHEIN, R.-Y.; DEMAFELIS, R.; CHIARASUMRAN, N.; SAPUTRO, H.; ALHIKAMI, A.F.; SAKULSHAH, N.; LAEMTHONG, T. Toward sustainability of Waste-to-Energy: An overview. Energy Conversion and Management, v. 321, p. 1-22, 2024.
HEWES, A. K., LYONS I. D. The Humanistic Side of Eco-Industrial Parks: Champions and the Role of Trust. Regional Studies, v. 42, n. 10, p. 1329–1342, 2008.
JANG, J.; KIM, Y. Material efficiency and greenhouse gas reduction effect of recycled industrial resources. Journal of Environmental Materials, v. 11, n. 4, p. 327–339, 2022.
JAYARAMAN, V.; PARTHASARATHY, S.; LAKSHMINARAYANAN, A. R. Forecasting the Emission of Greenhouse Gases from the Waste using SARIMA Model. In: International Conference on Trends in Electronics and Informatics (ICOEI), 6th, 2022, Tirunelveli, India, Anais. Tirunelveli: IEEE, 2022. p. 99-106.
KALUNDBORG SYMBIOSIS. Cooperation. Systemic Approach to Clean Industry, 2023. Disponível em: https://www.symbiosis.dk/en/samarbejde/.
KALUNDBORG SYMBIOSIS. Kalundborg Symbiose. Surplus from circular production, 2025. Disponível em: https://www.symbiosis.dk/en//.
KEÇI, I. Industrial Symbiosis in the Circular Economy: A Review. Economicus, v. 23, n. 1, p. 19-34, 2024.
KOREVAAR, G. Industrial Ecology in support of building a Circular Economy. Ökologisches Wirtschaften - Fachzeitschrift, v. 37, n. 1, p. 24-25, 2022.
MALLAWAARACHCHI, H.; SANDANAYAKE, Y.; KARUNASENA, G.; LIU, C. Unveiling the conceptual development of industrial symbiosis: Bibliometric analysis. Journal of Cleaner Production, v. 258, n. 5, p. 1-9, 2020.
MANDEEP; GUPTA, G. K.; SHUKLA, P. Insights into the resources generation from pulp and paper industry wastes: challenges, perspectives and innovations. Bioresource Technology, v. 297, p. 1-10, 2020.
MERGULHÃO, A. C. E. S.; BURITY, H. A.; SILVA, F. S. B.; PEREIRA, S. V.; MAIA, L. C. Glomalin Production and Microbial Activity in Soils Impacted by Gypsum Mining in a Brazilian Semiarid Area. American Journal of Agricultural and Biological Sciences, v. 5, n. 4, p. 422-429, 2010.
MRAVCOVÁ, A. Assessing the effectiveness of international climate agreements in curbing emissions. International Journal of Climate Policy and Strategy, v. 12, n. 1, p. 45–61, 2025.
PACHECO, A.D.P.; NASCIMENTO, J.A.S.D.; RUIZ-ARMENTEROS, A.M.; DA SILVA JUNIOR, U.J.; JUNIOR, J.A.D.S.; DE OLIVEIRA, L.M.M.; MELO DOS SANTOS, S.; FILHO, F.D.R.; PESSOA MELLO GALDINO, C.A. Land Cover Transformations in Mining-Influenced Areas Using PlanetScope Imagery, Spectral Indices, and Machine Learning: A Case Study in the Hinterlands de Pernambuco, Brazil. Land, v. 14, n.2, p. 1-25, 2025.
PEDREÑO-ROJAS, M.A.; FOŘT, J.; ČERNÝ, R.; RUBIO-DE-HITA, P. Life cycle assessment of natural and recycled gypsum production in the Spanish context. Journal of Cleaner Production, v. 253, p. 1-11, 2020.
RINCON, J.A. A transition management methodological framework towards an industrial symbiosis within a circular economy. 2022. Tese (Doutorado em Engenharia Aplicada), Universidad de Navarra, Pamplona, 2022.
PACHÉ, G. Kalundborg Industrial Symbiosis: Circular Strategy in the Light of Mutualism. Journal of Strategic Innovation and Sustainability, v. 19, n. 3, p. 89-97, 2024.
PAQUIN, R. L.; HOWARD-GRENVILLE, J. The Evolution of Facilitated Industrial Symbiosis. Journal of Industrial Ecology, v. 16, n. 1, p. 83-93, 2012.
QUENTAL, P. A. Ensino de geografia e formação profissional em saúde: Perspectivas de ensino-aprendizagem de enfoque integrador a partir do caso da TKCSA. Revista Brasileira de Educação em Geografia, v. 11, n. 21, p. 5-31, 2021.
SAAVEDRA, Y. M. B. B.; IRITANI, D. R.; PAVAN, A. L. R.; OMETTO, A. R. Theoretical contribution of industrial ecology to circular economy. Journal of Cleaner Production, v. 170, p. 1514–1522, 2018.
SASMOKO, S.; ZAMAN, H.; HIDAYAT, A.; SUPIANTO, A.A. Environmental effects of biowaste recycling on climate. Journal of Cleaner Waste Technologies, v. 12, n. 4, p. 223–239, 2022.
UNIDO. United Nations Industrial Development Organization. International Yearbook of Industrial Statistics, 2024. Disponível em: https://stat.unido.org/publications/international-yearbook-industrial-statistics-2024.
VALENZUELA-VENEGAS, G.; VERA-HOFMANN, G.; DÍAZ-ALVARADO, F.A. Design of sustainable and resilient eco-industrial parks: Planning the flows integration network through multi-objective optimization. Journal of Cleaner Production, v. 243, p. 1-25, 2020.
WALMSLEY, T. G.; ONG, B. H. Y.; KLEMES, J. J.; TAN, R. R.; VARBANOV, P. S. Circular Integration of processes, industries, and economies. Renewable and Sustainable Energy Reviews, v. 107, p. 507-515, 2019.
Web of Science. Portal de Periódicos da CAPES, 2026. Disponível em: https://www-webofscience-com.ez83.periodicos.capes.gov.br/wos/woscc/summary/3b1cbfc8-1d72-44a9-bcc8-8c099406084e-019ea4efb3/relevance/1