USE OF BIOFERTILIZERS AS AN AGRICULTURAL PRACTICE AIMED AT INCREASING RESILIENCE AND CLIMATE ADAPTATION IN FAMILY FARMING SYSTEMS: AN ANALYSIS BASED ON SCIENCE, BRAZILIAN PUBLIC POLICIES, AND THE IPCC FRAMEWORK FOR CLIMATE JUSTICE AND JUST TRANSITION
DOI:
https://doi.org/10.56238/revgeov16n5-073Keywords:
Climate Change, Climate Emergency, Bio-Inputs, IPCC Referential, Brazilian National Public Policies, Hortbio®Abstract
The objective of this study is to present a systematic review of the literature addressing the use of biofertilizers in family farming as a strategy for increasing resilience and climate adaptation, its relationship with Brazilian public policies, and with the Intergovernmental Panel on Climate Change's benchmarks for climate justice and just transition. To this end, the PRISMA method was used, which is state of the art for studies that aim to systematically review the literature on a given topic, and a case study on the non-commercial biofertilizer Hortbio®. It was possible to verify the need to migrate from the conventional model of food production to regenerative agriculture, including the use of bio-inputs as a strategy. Bio-inputs contain a series of microorganisms capable of producing compounds similar to plant growth-promoting hormones that can increase the tolerance of agricultural crops to abiotic stresses. Hortbio® fits into this context, with great microbial diversity, auxin production, and proven ability to increase heat tolerance in lettuce. Its open formula and non-commercial nature make it a potential solution that meets the IPCC's climate justice and just transition frameworks.
Downloads
References
Alatzas, A. (2013). Histones and plant hormones: New evidence for an interesting interplay. Botanical Review, 79, 317–341. https://doi.org/10.1007/s12229-013-9119-6
Anand, U., Pal, T., Yadav, N., et al. (2023). Current scenario and future prospects of endophytic microbes: Promising candidates for abiotic and biotic stress management for agricultural and environmental sustainability. Microbial Ecology, 86, 1455–1486. https://doi.org/10.1007/s00248-023-02190-1
Assad, E. D., & Assad, M. L. R. C. L. (2024). Mudanças do clima e agropecuária: impactos, mitigação e adaptação. Estudos Avançados, 38(112), 271–292. https://doi.org/10.1590/s0103-4014.202438112.015
Ballarin, A. S., Sone, J. S., Gesualdo, G. C., Schwamback, D., Reis, A., Almagro, A., & Wendland, E. C. (2023). CLIMBra - Climate change dataset for Brazil. Scientific Data, 10, 36. https://doi.org/10.1038/s41597-023-01956-z
Bomfim, C. A., do Vale, H. M. M., Lima, C. E. P., da Silva, J., Zandonadi, D. B., & Fontenelle, M. R. (2024). Microbiological characterization and functional evaluation in formulation made on farm at different times of production. Revista Caderno Pedagógico, 21(6), 1–23. https://doi.org/10.54033/cadpedv21n6-155
Bomfim, C. A., Fontenelle, M. R., Braga, M. B., Zandonadi, D. B., Silva, J. da, Guedes, I. M. R., Vale, H. M. M., & Lima, C. E. P. (2023). Lettuce types development and substrate fertility attributes in response to doses of an aerobic biofertilizer. Journal of Agricultural Sciences Research, 3(10), e9733102313079. https://doi.org/10.22533/at.ed.9733102313079
Bouhzam, I., Azarkamand, S., Puig, R., Bala, A., Fullana-i-Palmer, P., Sazdovski, I., Mazurenko, B., Mir, S., Sani, M. N. H., Lopes, I. G., Maievska, T., Raksha, N., Savchuk, O., Ghaley, B. B., Yong, J. W. H., & Tonkha, O. (2025). Assessing environmental impacts of various biofertilizers in Europe: A step toward circular economy transition. Sustainable Production and Consumption, 56, 460–476. https://doi.org/10.1016/j.spc.2025.04.012
Cajamarca, S. M. N., Lima, C. E. P., Silva, J. da, Guedes, I. M. R., Braga, M. B., Fontenelle, M. R., & Figueiredo, C. C. (2019b). Curly lettuce development, nutrient absorption and salinization tolerance in response to an aerobic biofertilizer produced from agro-industrial residues. Australian Journal of Crop Science, 13(10), 1659-1667. https://doi.org/10.21475/ajcs.19.13.10.p1893
Cajamarca, S. M. N., Martins, D., da Silva, J., Fontenelle, M. R., Guedes, Í. M. R., de Figueiredo, C. C., & Lima, C. E. P. (2019a). Heterogeneity in the chemical composition of biofertilizers, potential agronomic use, and heavy metal contents of different agro-industrial wastes. Sustainability, 11(7), 1995. https://doi.org/10.3390/su11071995
CONTAG, Observatório do Clima. (2025). Family farming and food systems: Carbon removal and just transition. (Eds. C. E. P. Lima, F. B. P. L. Rubinstein, J. B. Amaral, L. S. Leal, R. Zoche, S. P. Bonetti). Seven Publications Ltda. https://doi.org/10.56238/livrosindi202507-002
COPERNICUS. (2025a, January 10). Copernicus Global Climate Report 2024 confirms last year as the warmest on record, first ever above 1.5°C annual average temperature. Copernicus. https://www.copernicus.eu/en/news/news/copernicus-global-climate-report-2024-confirms-last-year-warmest-record-first-ever-above
COPERNICUS. (2025b, February 6). Surface air temperature for January 2025. Copernicus Climate Change Service. https://climate.copernicus.eu/surface-air-temperature-january-2025
Embrapa Hortaliças. (2012). Hortbio®: Biofertilizante líquido para produção de hortaliças. Folder técnico. Brasília, DF: Embrapa Hortaliças. Recuperado de https://www.infoteca.cnptia.embrapa.br/bitstream/doc/946012/1/folder20hortbio.pdfEmbrapa
Flores, B. M., Montoya, E., Sakschewski, B., Nascimento, N., Staal, A., Betts, R. A., ... & Hirota, M. (2024). Critical transitions in the Amazon forest system. Nature, 626(7995), 555–562. https://doi.org/10.1038/s41586-023-06970-0
Instituto Brasileiro de Geografia e Estatística (IBGE). (2017). Censo Agropecuário 2017: Agricultura Familiar. Governo Federal do Brasil.
Intergovernmental Panel on Climate Change (IPCC). (2018). Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. https://www.ipcc.ch/sr15/
Intergovernmental Panel on Climate Change (IPCC). (2021). Summary for Policymakers. In V. Masson-Delmotte, P. Zhai, A. Pirani et al. (Eds.), Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 3–32). Cambridge University Press. https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM.pdf
Intergovernmental Panel on Climate Change (IPCC). (2023). Summary for Policymakers. In A. Reisinger, R. Slade, J. Skea et al. (Eds.), Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 3–36). IPCC. https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_SPM.pdf
Kahana, R., Halladay, K., Alves, L. M., Chadwick, R., & Hartley, A. J. (2024). Future precipitation projections for Brazil and tropical South America from a convection-permitting climate simulation. Frontiers in Climate, 6, 1419704. https://doi.org/10.3389/fclim.2024.1419704
Kurniawati, A., Stankovics, P., Hilmi, Y. S., Toth, G., Smol, M., & Toth, Z. (2023). Understanding the future of bio-based fertilisers: The EU's policy and implementation. Sustainable Chemistry for Climate Action, 3, Article 100033. https://doi.org/10.1016/j.scca.2023.100033
Li, L., Awada, T., Shi, Y., Jin, V. L., & Kaiser, M. (2025). Global Greenhouse Gas Emissions From Agriculture: Pathways to Sustainable Reductions. Global Change Biology, 31(1), e70015. https://doi.org/10.1111/gcb.70015
Marques, M. T. A., Kovalski, M. L., Perez, G. M. P., Martin, T. C. M., Barbosa, E. L. S. Y., Ribeiro, P. A. S. M., & Valdes, R. H. (2024). Data-driven discovery of mechanisms underlying present and near-future precipitation changes and variability in Brazil. EGUsphere [preprint]. https://doi.org/10.5194/egusphere-2024-48
Ministério da Agricultura e Pecuária. Secretaria de Inovação, Desenvolvimento Sustentável, Irrigação e Cooperativismo. (2023). Estratégia de adaptação à mudança do clima para a agropecuária brasileira. Brasília: MAPA/SDI. ISBN 978-85-7991-214-6.
Pérez-Bernal, S., Sekar, J., Prabavathy, V. R., Mathimaran, N., Thimmegowda, M. N., Bagyaraj, D. J., & Kahmen, A. (2025). Biofertilizers enhance land-use efficiency in intercropping across crop mixtures and spatial arrangements. Frontiers in Agronomy, 7, 1562589. https://doi.org/10.3389/fagro.2025.1562589
Pilon, L., Ginani, V. C., Fontenelle, M. R., Lima, C. E. P., Braga, M. B., & Zandonadi, D. B. (2019). Qualidade microbiológica de alface fertirrigada por gotejamento com fertilizantes orgânicos ou mineral (Boletim de Pesquisa e Desenvolvimento 179). Embrapa Hortaliças.
Pingali, P. L. (2012). Green Revolution: Impacts, limits, and the path ahead. Proceedings of the National Academy of Sciences, 109(31), 12302–12308. https://doi.org/10.1073/pnas.0912953109
Santos, M. P., Zandonadi, D. B., de Sá, A. F. L., Costa, E. P., de Oliveira, C. J. L., Perez, L. E. P., Façanha, A. R., & Bressan-Smith, R. (2020). Abscisic acid-nitric oxide and auxin interaction modulates salt stress response in tomato roots. Theoretical and Experimental Plant Physiology, 32, 301–313. https://doi.org/10.1007/s40626-020-00187-6
Sela, S., Dobermann, A., Cerri, C. E., Svoray, T., van-Es, H., Amsili, J., Biradar, S., Luzon, U., & Katz, S. (2024). Towards a unified approach to prioritization of regenerative agricultural practices across cropping systems. npj Sustainable Agriculture, 2(24), Article 224. https://doi.org/10.1038/s44264-024-00031-3
Tang, H., Hassan, M. U., Feng, L., Nawaz, M., Shah, A. N., Qari, S. H., Liu, Y., & Miao, J. (2022). The critical role of arbuscular mycorrhizal fungi to improve drought tolerance and nitrogen use efficiency in crops. Frontiers in Plant Science, 13, 919166. https://doi.org/10.3389/fpls.2022.919166
Zhang, L., Yan, C., Guo, Q., Zhang, J., & Ruiz-Menjivar, J. (2018). The impact of agricultural chemical inputs on environment: Global evidence from informetrics analysis and visualization. International Journal of Low-Carbon Technologies, 13(3), 338–352. https://doi.org/10.1093/ijlct/cty039